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I. Introduction 
Solvent motions and relaxation processes play a 

crucial role in the dynamics of reaction rates1-I7 and in 
determining molecular linear and nonlinear optical 
properties. Electron-transfer rates are dominated by 
the solvent dielectric fluctuations,'-" whereas isomer- 
ization  reaction^'^-'^ are directly affected by .solvent 
friction. Optical line shapes of polyatomic molecules 
in solution provide a direct probe for the interaction 
between the solvent and the The solvent- 
induced spectral shifts and line broadening, and their 
temporal evolution, reflect the intermolecular forces 
resulting in electronic and vibrational relaxation pro- 
cesses. Recent developments in nonlinear optical 
spectroscopy, in particular the successful application 
of femtosecond laser pulses,2z provide a direct probe for 
elementary photophysical and photochemical processes. 
The dynamics and relaxation processes in semicon- 
duc tor~ ,~ '  solvated dye  molecule^,'^^^ elementary re- 
action events,z4 and the solvated were 
monitored with remarkable temporal and spectral res- 
olution. In this Account we present a semiclassical 
theoretical f r a m e w ~ r k ~ ~ - ~ ~  that provides a unified de- 
scription of molecular rate processes and nonlinear 
optical spectroscopy. Considerable progress was made 
recently in understanding the elementary electron- 
transfer processes in the photosynthetic reaction cen- 
ter.36 The interpretation of pump-probe and photon 
echo measurements conducted on this system and their 
relationship with the electron transfer is an interesting 
puzzle. The concepts presented here may contribute 
toward clarifying the relationships among the optical 
and the electron-transfer measurements in this complex 
system. 

The connection between rate theories and optical line 
shapes may be understood as follows: Reaction rates 
may be calculated by starting with a nonadiabatic 
(two-state) model and expanding the rate perturbatively 
in the nonadiabatic coupling V. Optical line shapes are 
usually calculated by expanding the polarization in 
powers of the electric field E. Both expansions are 
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expressed in terms of correlation functions. To lowest 
order (V),  the nonadiabatic rate is given by the Fermi 
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golden r ~ l e ; ~ * ~  the optical response to first order in E 
(e.g., the absorption line shape) is given by the linear 
susceptibility #). Both quantities are related to a 
two-time correlation function of the solvent. In the next 
order ( V4), the rate is related to a four-point correlation 
function.35 The same correlation function enters in the 
calculations of the third-order nonlinear susceptibility 
(to order E3),  x(3).32 Numerous nonlinear optical mea- 
surements can be interpreted in terms of x ( ~ ) .  
Fluorescence, coherent and spontaneous Raman, hole- 
burning, pump-probe, and four-wave mixing are a few 
examples of optical measurements related to x ( ~ ) ,  The 
expansions can be carried out to higher orders, and in 
general, the rate to order P" is related to x ( ~ ~ - ' ) .  

This connection establishes a fundamental link be- 
tween the dynamics of rate processes and nonlinear 
optical measurements and provides a novel way of in- 
terpreting both types of experiments in a unified way. 
Optical measurements constitute the most sensitive and 
accurate probes for solvation dynamics. The relations 
presented in this Account allow the direct use of in- 
formation obtained in optical measurements, in the 
calculation of rate processes. An example is the phe- 
nomenological identification of rotational diffusion rates 
obtained by fluorescence depolarization, as the relevant 
solvent time scale in adiabatic rate t h e ~ r i e s . ~ ~ ~ J ~ J ~  The 
present theory establishes such relations in a very 
profound way. In addition, the theoretical methodology 
used in calculating optical line shapes is well developed 
and provides a good understanding of solvent dephas- 
ing processes, which control the spectral shapes and line 
widths. The present relations allow the use of the same 
methods and concepts in the intepretation of rate 
processes as well. 
11. Molecular Dynamics in Liouville Space 

We consider a reactive molecular system undergoing 
a rate process such as electron transfer or isomerization 
in solution. The reaction rate can be calculated by using 
an adiabatic formulation, whereby the electronic energy 
is calculated for every nuclear configuration. This re- 
sults in a single potential surface that depends param- 
etrically on the nuclear configuration. The rate process 
is then described as a motion of the system on this 
surface. The Kramers and the Smoluchowski equations 
are based on this ~iewpoint . '~J~ Alternatively, the rate 
process can be described by using a nonadiabatic pic- 
ture, in which we consider a two-level electronic system, 
la) and Ib), representing reactants and products, re- 
spectively, that are coupled by a nonadiabatic coupling 
V. It is the latter approach that we adopt in this Ac- 
count, since it provides the best insight on the rela- 
tionship between rate processes and nonlinear optical 
measurements. In the strong coupling limit our results 
agree with those derived from adiabatic models. 

We start our analysis by considering a rate process 
involving a molecular system with two electronic levels 
(la) and Ib)) in a solvent. The total Hamiltonian is 

(11-1) 

where 
(11-2a) 

H = H(J + Hint 

HO = la)Ha(al + Ib)Ht,(bl 
H i n t  = Ria) (bl + lb) (al) (11-2b) 

(36) The Photosynthetic Bacterial Reaction Center; Breton, J., Ver- 
meglio, A., Eds.; Plenum: New York, 1988. 
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Figure 1. Solvation dynamics during a rate process. U is the 
solvation coordinate. V, and v b  denote the adiabatic potential 
surfaces while A, = (up,) and Ab = ( U p b )  are the solvent re- 
organization energies for reactant and product, respectively. Eo 
is the endothermicity; AGab* is the activation free energy for the 
forward (la) to Ib)) reaction. The solvent time scales 7, and 7 b  
characterize the relaxation of a solvent fluctuation at  the transition 
state (curve crossing U = -Eo) in the reactant and the product 
adiabatic surfaces, respectively. Harmonic free energy surfaces 
are used in this F i e .  We have chosen the origin of the solvation 
coordinate to be a t  the crossing point so that A, > 0 and Ab < 0. 
In the perturbative limit, the rate depends only on the single 
Marcus reorganization energy parameter 2 X  = IX, - Abl. 

Here Ha and Hb are the adiabatic Hamiltonians rep- 
resenting nuclear degrees of freedom (both intramo- 
lecular and solvent) and V is the nonadiabatic coupling 
between the two reacting species (Figure 1). The dy- 
namics of the system may be calculated by starting with 
the Liouville equation for its density matrix f i ,  

dfi 
- dt = -i[Ho,j] - i[Hi,t,fi] (11-3a) 

and assuming that initially the system is in thermal 
equilibrium within the la) state; i.e., 8(0) = la)p,(al, with 

p, = exp(-H;/kr)/[Tr exp(-H,/k'T?] j = a, b 
(11-3b) 

For brevity we set h = 1 in this Account, except in the 
final expressions for the rates. The probability of the 
system to be in the state la) may be obtained by cal- 
culating the diagonal density matrix element and 
tracing it over all nuclear (intramolecular and solvent) 
degrees of freedom. This may be done by using 
standard projection operator techniques in Liouville 
space.35 We then obtain an exact formal expression for 
the reaction rate constant K. We have expanded the 
rate perturbatively to fourth order in the nonadiabatic 
coupling (K = C2v2 - C4V4 + ...) and constructed a Pade 
approximant which provides a partial summation of the 
series to infinite order, resulting in35 

(11-4) 

Rate expressions with the same rational dependence on 
the nonadiabatic coupling V were obtained previously 
by several authors.a1' C2 is given by 

C2 = 2 Re x m d t l  J ( t J  (11-5) 

where Re denotes the real part and 
J(t1) = ([exp(-iHbti)p, exp(iHati)]) (Gba(tl)Pa) 

J( t l )  is calculated by starting with the equilibrium 
density matrix pa, propagating it from the left and the 
right with the Hamiltonians Hb and Ha, respectively, 

(11-6) 
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for a time period tl ,  and then taking a trace. The an- 
gular brackets (...) introduced in eq 11-6 denote a trace 
over all nuclear (solvent and molecular) degrees of 
freedom. G,,(t) is a Liouville-space Green function, 
defined by its action on an arbitrary operator A: 

G,,(t)A exp(-iH,t)A exp(iH,t) m, n = a, b 

The fourth-order contribution to the rate constant (eq 
11-4) is given by 
c4 = 

(11-7) 

R(t3,tZ,tl) is calculated in an analogous way to J( t l )  by 
starting with pa, propagating it for three consecutive 
time periods tl, t z ,  and t3 with various choices of prop- 
agation with Ha and Hb from the left and the right, and 
then taking a trace, Le., 

4 

j =  1 
R(t3,tZ,tl) = CRj(t3,tZ,tl) (II-9a) 

Rl(t3 , td l )  = (Gba(t3) Gbb(t2) Gba(t1)Pa) (II-9b) 
(II-9c) 
(II-9d) 

R4(t3,;2,tl) = (Gba(t3) Gaa(t2) Gba(t1)Pa) (II-9e) 
Expressions similar to eq 11-5 and 11-8 can be derived 
for the higher order terms in the expansion (C6, C8, etc.) 
without a major difficulty. In general, Cz, will contain 
a product of 2n - 1 Liouville-space Green functions 
G,,(t). For the subsequent analysis presented in this 
Account, we need not write these higher order expres- 
sions explicitly. The physical significance of J( t l )  and 
R(t3,tZ,tl) will further be clarified in the next section, 
following the introduction of a semiclassical procedure 
for their evaluation. 

We shall consider now the analogous model system 
for linear and nonlinear optical spectroscopy. Consider 
a molecule with a ground electronic state la) and a 
single excited electronic state Ib), interacting with the 
electromagnetic field. The Hamiltonian is given by eq 
11-1, but Hint represents the interaction with a classical 
electromagnetic field E(r , t ) :  

Hint = -pE(r,t)(Ja) (bl + Jb) (ai) (11-10) 
Here Ha and Hb represent the Hamiltonians for the 
intramolecular (vibration, rotation) and for the solvent 
degrees of freedom, when the system is in the electronic 
states la) and Ib), respectively, and p is the electronic 
transition dipole matrix element. The optical properties 
of the system may be related to the time-dependent 
polarization P(r,t) .  The polarization is usually ex- 
panded in a Taylor series in E:32 
P(r,t) = W(r,t) + Pz)(r,t) + P(3)(r,t) + ... (11-11) 
P1) is related to the linear optical properties, whereas 
P2), P3), etc., constitute nonlinear contributions. In an 
isotropic medium, P2) = 0; we shall therefore focus on 
PC') and P3). The polarization is calculated by taking 
the expectation value of the dipole operator ,& = p(Ja) (b) 
+ Ib) (al), after the density matrix 5 is calculated to the 
desired order. Pel) is given by a convolution of the 
electromagnetic field E and the linear response func- 

R2(t3,tZ,tl) = ( Gba(t3) Gbb(t2) Gab(tl)Pa) 

R3(t3,tZ,tl) = (Gba(t3) Gaa(tZ) Gab(tl)Pa) 

tion, -21p12 Im J( t l ) ,  where J(t l) ' is  given by eq 11-6, 

Pfl)(r,t) = -21p12 Im Jmdtl  J(tl) E(r,t-t,) (11-12) 

Here Im denotes the imaginary part. Similarly P3) is 
given by a triple convolution of the electromagnetic field 
and the third-order nonlinear response function, 21p14 
Im R(t3,tZ,tl), where R(t3,tZ,tl) is given by eq 11-9: 

E(r,t-tl-tZ-t3) E(r,t-tz-t3) E(r,t-t3) (11-13) 
Equation 11-12 implies that the system interacts once 
with the electromagnetic field a t  time t - tl. Its sub- 
sequent evolution for a period tl is then given by the 
linear response function. I?') at time t is obtained by 
performing an integration over all possible values of tl. 
Similarly, in eq 11-13, the system interacts three times 
with the electromagnetic field at times t - t l  - t z  - t3,  
t - t z  - t3, and t - t3. The nonlinear response function 
R(t3,tZ,tl) describes the time evolution between these 
interactions and from time t - t3 to t. tl, tz ,  and t3 are 
the time intervals between successive interactions. The 
integrations over all possible values of tl ,  tz, and t3 result 
in the third-order nonlinear polarization at time t. 
Equations 11-12 and 11-13 allow for an arbitrary tem- 
poral profile of E(r , t )  and are valid for pulsed as well 
as steady-state experiments. In a steady-state experi- 
ment we take E(r , t )  to be the sum of a few monochro- 
matic fields. P') and P3) are then related to the optical 
susceptibilities x(l) and x ( ~ ) ,  respec t i~e ly .~~ 

The formal expressions presented here establish a 
fundamental connection between the calculation of rate 
constant (eq 11-4 together with 11-5 and 11-8) and the 
optical polarization (eq 11-12 and 11-13). The reaction 
rates are expressed in terms of the real part of the 
dynamical quantities J( t l )  and R(t3,t2,tJl whereas the 
optical polarization is related to the imaginary part of 
these dynamical quantities. It should be emphasized, 
however, that the two states la) and Ib) involved in an 
optical measurement are usually different from those 
participating in a rate process (electron transfer or 
isomerization) in the same chromophore. Their elec- 
tronic charge distribution and coupling to the solvent 
could therefore be very different. Consequently, the 
correlation functions J ( t l )  and R(t3,tZ,tl) may be very 
different in both cases. Nevertheless, the way the 
solvent couples with optical and rate processes is for- 
mally identical, and the powerful theoretical methods 
and concepts, such as dephasing processes developed 
for the interpretation of optical spectroscopy, can be 
readily used in the description of rate processes using 
the present formulation. In the remainder of this Ac- 
count, we shall apply the present formal expressions t~ 
analyze the role of solvation dynamics in electron 
transfer and in the optical measurements (absorption, 
fluorescence, and pump-probe) of a chromophore in a 
polar solvent environment. For clarity we consider only 
the contribution of solvent modes to J( tJ  and R(t3,tz,tl) 
and do not include intramolecular nuclear degrees of 
freedom (vibrations and rotations). 
111. Semiclassical Approximation for Solvation 
Dynamics 

In this section, we develop a general yet very simple 
semiclassical approximation scheme for the calculation 
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of the solvent correlation functions J( t l )  and R(t3,t2,tJe 
The present approach provides useful expressions for 
these correlation functions and offers a tremendous 
insight regarding the important factors that affect the 
dynamics of reaction rates and optical line shapes. 
Consider the various Liouville-space Green functions 
G,,(t) that enter in eq 11-6 and 11-9. The Green 
functions with m = n, G,(t2) and Gbb(t2), represent the 
evolution of the diagonal elements of the density matrix 
(leuel populations) whose time evolution from the left 
and from the right is with the same Hamiltonian. On 
the other hand, Gba(t) and Gab(t), with t = t l  or t3, 
represent the time evolution of molecular coherences 
(off-diagonal elements of the density matrix); their time 
evolution from the left and from the right is with dif- 
ferent Hamiltonians. The semiclassical approximation 
is obtained by approximating the Liouville-space Green 
function corresponding to coherences as 

Gba(t) = Gabt(t) Z eXp[-i(l/ + EO)t]  (111-1) 

where U = Hb -Ha - E o  is the solvation coordinate. Eo 
= hwba is the energy difference between the potential 
minima of Ha and H b .  In a rate process this is the 
reaction free energy (denoted E O ) ,  whereas in an optical 
process this is the fundamental 0-0 transition energy 
(denoted huba). This approximation may be derived 
by assuming that Ha and Hb commute, resulting in the 
cancellation of the solvent nuclear kinetic energy. The 
semiclassical approximation is expected to hold at high 
temperatures and is known in the theory of spectral line 
shapes as the static or the statistical limit.37 The 
motions and fluctuation properties of solvent degrees 
of freedom as collectively appear in U play a major role 
in controlling the spectral broadening as well as the 
dynamics of electron transfer. Our semiclassical ap- 
proximation for the response functions is obtained by 
substituting eq 111-1 for Gba(t) and its Hermitian con- 
jugate Gab(t) in eq 11-6 and 11-9. 

At  this point we should make a few comments to 
clarify why we are using the semiclassical approximation 
for the coherences (Gba and Gab) and not for the pop- 
ulations (G, and Gbb). Coherences in condensed phases 
are usually subject to fast dephasing processes resulting 
from the solvent motions that destroy the phase of the 
density matrix elements fibs and ;ab. Consequently, the 
coherence Green functions are expected to decay rap- 
idly, and the relevant time scales tl and t3 that enter 
into eq 11-6 and 11-9 are of the order of the dephasing 
time scale. The latter is typically in the femtosecond 
range, as can be seen from the line widths of optical 
transitions in solution. We thus need to evaluate Gb(t) 
and Gab(t) for very short times, over which the solvent 
nuclei are practically stationary, and a semiclassical 
approximation is justified. Pure dephasing processes 
do not affect the diagonal elements of the density ma- 
trix (populations), so the typical time scales for t2  in eq 
11-9 are of the order of the lifetime of the electronic 
states, which may be much longer (typically in the na- 
nosecond to subpicosecond range). It is therefore rea- 
sonable to ignore the solvent nuclear kinetic energy 
when the system is in a coherence (the tl  and t3 inter- 
vals) but not when it is in a population ( t 2 ) .  In order 
to express our results in a compact form, we introduce 

(37) Breene, R. G. Theories of Spectral Lineshapes; Wiley: New 
York, 1981. 
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two auxiliary quantities. The first is the probability 
distribution of the solvation coordinate U when the 
system is in the state j :  

uj(x) = (G(x-U)pj) j = a, b (111-2) 

The second quantity is the conditional probability for 
the solvation coordinate to have the value x at time t ,  
given that it had the value y at t = 0 and that the 
system is in the state j ,  i.e., 
Wj(x7t ;~)  [ua(y)l-'(a[x-Uj(t)l a(y-U)Pa) (111-3) 
where 
Uj(t)  = exp(iHjt)U exp(-iHjt) j = a, b (111-4) 

Note that, by definition, Wj(x,O;y) = 6(x-y) and 

We shall now apply the semiclassical approximation 
to optical line shapes. Within the semiclassical ap- 
proximation, we view the solvation coordinate simply 
as a classical function of the solvent degrees of freedom 
(rather than an operator). A photon w may be absorbed 
or emitted only when the solvation coordinate has the 
value U = w - aba. This is the classical Franck-Condon 
p r i n ~ i p l e . ~ ~  The absorption spectrum at frequency w 
is then proportional to the probability of the solvation 
coordinate to have the value w - coba when the system 
is in the la) state. This probability is Ua(O-Uba). Sim- 
ilarly, Ub(w-Ub) is the emission (fluorescence) spectrum 
in a steady-state experiment when the radiative lifetime 
is long compared with the solvent relaxation, so that 
the emission is from an excited state where the solvent 
is fully relaxed. We next consider two time-resolved 
spectroscopic techniques that are commonly used in the 
studies of solvation: fluorescence and hole-burning 
(pump-probe) s p e c t r o s ~ o p i e s . ~ ~ - ~ ~ ~ ~ ~  Both measure- 
ments are related to P3) and start with the application 
of a short pump pulse centered at t = 0 with frequency 
wl. In a time-resolved fluorescence measurement, the 
solvation dynamics when the solute is in the excited 
electronic state Ib) are probed by collecting a sponta- 
neously emitted photon with frequency w2 at time t .  
The fluorescence signal may be expressed in terms of 
the response functions R1 and R2 introduced in section 
I1 and is given by33334 

Wj(x,m;y) = U j ( X ) .  

SFL(W1?W2,t) = w1w23Wb(w2-oba,t;ol-wba) ua(w1-mba) 
(111-5) 

Equation 111-5 can be interpreted as follows. ua(wl-wb) 
is the rate of absorbing a photon w1 by the system. 
Wb(W2--Ot&q-@b) is the conditional probability of the 
solvation coordinate to have the value U = w2 - a b a  at 
time t given that it had the value U = w1 - a b a  at t = 
0. The rate of emitting an w2 photon at time t following 
the absorption of an w1 photon at t = 0 is thus pro- 
portional to the product of ua and Wb 

In an ultrafast pump-probe (hole-burning) mea- 
surement, the absorption spectrum is measured with 
a probe pulse that is delayed relative to the pump pulse 
by time t. The hole-burning line shape Sm(w1,w2,t) is 
defined as the difference between the absorption 
coefficient at w2 in the absence of a pump pulse and the 
absorption coefficient at w2 measured with a probe pulse 
that follows a pump pulse. Since the hole-burning line 
shape is proportional to the population difference be- 
tween the two electronic states, the solvation dynamics 

(38) Lax, M. J .  Chem. Phys. 1952,20, 1752. 
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in both the excited state (with R1 and R2) and the 
ground state (with R3 and R4) enter in Sm(W1,uZ,t). We 
then get33i34 

SHB(w1,WZ,t) = @1%[ Wb(WZ-Wba,t&’l-Wba) + 
Wa(%-aba,t;wl-%a)l aa(ml-Uba) (111-6) 

Equation 111-5 and 111-6 were derived by assuming that 
both the pump and the probe pulses are short compared 
to the time scales of the orientational relaxation of the 
solvent. Let us consider now the origin and the physical 
interpretation of the two contributions to the hole- 
burning spectrum. In this experiment the excitation 
pulse selects a group of molecules in the ground state 
whose solvation coordinate is around U = w1 - Wba and 
transfers them to the excited state, thus creating a 
“particle” in the excited state and a “hole” in the ground 
state. wb results from the R1 and R2 terms and their 
complex conjugates. In these pathways, the system is 
in the electronically excited state Ib) during the time 
interval t2 ,  where the solvation dynamics takes place. 
The solvation coordinate will attain the limiting dis- 
tribution determined by Pb as t2  - 03. wb represents, 
therefore, the excited “particle” dynamics as discussed 
previously for the fluorescence spectra. W,, on the 
other hand, results from pathways R3 and R4 and their 
complex conjugates, in which the system is back in the 
ground state la) during the t2  time interval. W ,  rep- 
resents “holes” in the ground-state distribution. The 
solvation dynamics underlying W ,  corresponds to the 
relaxation of the solvation coordinate to attain the 
equilibrium distribution determined by pa. Since the 
probe absorption spectrum is sensitive to the population 
difference between the ground and the excited states, 
it depends on both wb and W,. 

It should be noted that a more general theory of 
pump-probe spectroscopy may be required in order to 
account for the most recent femtosecond experiments 
in which coherent nuclear motions (quantum beats) are 
produced in real time.19~20~22-24 The necessary general- 
izations of eq 111-5 and 111-6 include the use of more 
microscopic models for the solvation dynamics, avoiding 
the static approximation (eq 111-1) and including the 
quantum dynamics instead, and the incorporation of 
molecular vibrations using their phase space distribu- 
tions. In addition, since in many of the current fem- 
tosecond experiments the pump and the probe may 
overlap in time, it is necessary to allow for all possible 
time orderings of the pump with respect to the probe. 
(In the present theory, we assume that the pump acts 
first and the probe second.) All these generalizations 
can be incorporated by starting with eq II-13.26,32 

We next turn to the rate constant (eq 11-41. When 
the semiclassical approximation eq 111-1 is substituted 
in eq 11-6 and 11-9, and the integrations over t ,  and t3  
in eq 11-5 and 11-8 are performed, the reaction rate 
assumes the form 

27r( v2 / h ) a,(-E”) 
K =  (111-7) 

1 + 27r(v2/h)ba(-E0)(Ta + T b )  

rj = [o , ( -E0)] - ’Jmdt  [Wj(-E”,t;-E”) - 
wj (-E”, m ;-E”)] j = a, b (111-8) 

The nature of the rate process is determined by the 
adiabaticity parameter Y f 2?r(v2/h)a,(-E0)(7, + T b ) .  

0 
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When v << 1, the reaction is nonadiabatic and we have 
KNA = 27r(~2/h)u,(-E0).  In the opposite limit, v >> 1, 
the reaction is adiabatic and the rate is given by K O  

The present expression for the rate constant as well 
as the adiabaticity parameters has been derived and 
discussed previously by many a ~ t h o r s . & ~ ~ J ’  The no- 
nadiabatic rate expression, which may be simply ob- 
tained from the Fermi golden rule, was developed by 
Levich and co-workers for Debye solvents39 and then 
generalized to an arbitrary solvent by Ovchinnikov and 
Ovchinnik~va~~ and by Zusman and Helman:lo The 
early works of Hopfield: Jortner? and co-workers also 
focused on the nonadiabatic limit. Zusman has used 
a Markovian stochastic Liouville equation to derive a 
rate expression that interpolates between the adiabatic 
and the nonadiabatic limits. When the Debye model 
for the solvent is used, eq 111-7 reduces to these earlier 
results. The adiabatic rate given here was also derived 
by Hynes,17 Sumi and Marcus,8 and Rips and Jortnerg 
for the Debye model. The derivation of Hynes is based 
on formulating the rate constant in terms of a flux 
correlation function, starting with an adiabatic (single 
potential surface) picture. The present derivation, 
which starts with the opposite (nonadiabatic) repre- 
sentation and is based on the evaluation of the non- 
linear response function, provides an unconventional 
viewpoint for interpreting the expression and, most 
importantly, establishes the connection with nonlinear 
optical spectroscopy. In the semiclassical (static) ap- 
proximation, the nonadiabatic rate depends on the 
value of ua(x) at one point x = -Eo. That point is the 
curve crossing (the transition state) (Figure 1). KNA 
could be derived by making a static approximation 
starting with the Fermi golden rule. When the adia- 
baticity parameter is sufficiently large, the reaction 
becomes adiabatic, and the rate constant is equal to (7, + T,, and 7 6  are the characteristic solvent time 
scales which control the adiabaticity of the rate pro- 
cess. Let us have a closer examination of the physical 
significance of these time scales. T b  results from a 
combination of R1 and R2 that passes through an in- 
termediate state &,b as shown by Gbb(t2) in eq 11-9. 
During the t2 interval the reactant has changed into the 
product, but the solvation coordinate U is not in 
thermal equilibrium with the product Ib). It then un- 
dergoes relaxation to equilibrium during the t2  period 
as given by Gbb(t2) in eq 11-9b and 11-9c. When it 
reaches equilibrium ( t2  - m), the integrand in eq 11-8 
vanishes, and it does not contribute to the rate any 
more. The time scale for this equilibration process is 
Tb.  7, results from the combination of R3 and R4 that 
passes through an intermediate state im as shown by 
G,,(t,) in eq 11-9. This represents the back reaction 
processes in which the system has passed through the 
transition state and has returned back to the reactant 
la). Again, the solvation coordinate undergoing this 
process is not in thermal equilibrium with the reactant, 
and it relaxes to equilibrium during the t2  period, as 
given by Gaa(t2).  The time scale for this relaxation 
process is 7,. When this relaxation is completed, the 

(7, + Tb)-l. 

’ (39) Levich, V. In Physical Chemistry, an Advanced Treatise; Eyring, 
H., Henderson, D., Jost, W., Ed.; Academic Press: New York, 1970; Vol. 
9B. 

(40) Ovchinnikov, A. A.; Ovchinnikova, M. Y. Sou. Phys.-JETP 
(Engl. Transl.) 1969, 29, 688. 
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integrand in eq 11-8 vanishes and does not contribute 
to the rate. 7b is thus the average time it takes for a 
solvent fluctuation at  the transition state (U = -Eo) to 
relax to thermal equilibrium in the product well Ib), 
whereas 7, is the average time it takes for the same 
fluctuation to relax to thermal equilibrium in the 
reactant well la). This is represented schematically in 
Figure 1. 7 b  is determined by the same solvation dy- 
namics that controls w b ,  whereas 7, is related to the 
solvation dynamics that controls W,. If these time 
scales are fast, the adiabaticity parameter v vanishes 
and the rate is nonadiabatic. As the solvent time scales 
become longer, v increases, and a nonadiabatic rate will 
eventually turn adiabatic, with a rate equal to the 
proper inverse solvent time scale. The transition from 
the nonadiabatic to the adiabatic limit is therefore a 
result of the finite relaxation time of the solvent, which 
results in a change of the distribution of the solvation 
coordinate U at the transition state U = -Eo during the 
course of the rate process. These results are in full 
agreement with the established predictions of reaction 
rate theories.'-loJ7 It should be stressed that in eq 111-7 
and 111-8, we did not have to assume a priori that the 
reaction takes place at the transition-state configuration 
U = -Eo. This is rather a direct consequence of the 
semiclassical approximation. 

Our results provide a unique insight on the dynamics 
of optical and rate processes. The fluorescence spec- 
trum depends on solvation dynamics when the system 
is electronically excited, whereas the pump-probe 
spectrum contains both excited-state and ground-state 
dynamics.34 The nonlinear optical spectra probe the 
conditional probabilities Wj(x,t;y) = a, b) directly. 
By varying t ,  w l ,  and w2,  we directly measure Wj as a 
function of x ,  t ,  and y .  In contrast, the timescales T~ 

and 7b that enter in the rate expression are averages of 
the appropriate Wj functions for a single value of x and 
y, x = y = -Eo, and integrated over time. The infor- 
mation regarding solvation dynamics necessary to cal- 
culate reaction rates is therefore much more averaged 
than the information that could be obtained from 
fluorescence and hole-burning measurements. We re- 
iterate that the solvent quantities a; and W, entering 
into the calculations of the rate constant (eq 111-7 and 
111-8) are in general different from those appearing in 
the hole-burning and the fluorescence measurements 
(eq 111-5-111-8), since different electronic states are in- 
volved. In the next section we show that when certain 
approximations are made, the solvation dynamics is 
identical in both cases. 

The validity of the semiclassical approximation is 
intimately connected to the influence of pure dephasing 
processes that destroy optical coherences during the 
time intervals tl and t3 and allow us to use a short time 
approximation. Dephasing processes piay an important 
role in spectroscopy and in dynamical line shape 
a n a l y s i ~ . ~ ~ , ~ '  The present formulation introduces this 
concept to the analysis of rate processes as well and 
provides a new way of interpreting rate processes. It 
is interesting to note that the form of the rate constant 
and the transition from the nonadiabatic to the adia- 
batic regime is strikingly analogous to the saturation 
of spectral line shapes in a strong radiation field (the 
Karplus-Schwinger line shape) ,*l where V is replaced 

(41) Karplus, R.; Schwinger, M. J. Phys. Reu. 1948, 73, 1020. 
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by the Rabi frequency 1pEl. This is another beautiful 
manifestation of the intimate relationship between 
nonlinear optics and the dynamics of rate processes. 

IV. Ultrafast  Spectroscopy and Electron 
Transfer  in Polar Solvents 

Dielectric fluctuations in polar solvents play a crucial 
role in electron transfer and optical spec t ros~opy .~*~~  
Assuming electrostatic interaction between the solute 
and the solvent polarization, we have for the solvation 
coordinate 

U = -Jdr  [D&) - D,(r)]P(r) j = a, b (IV-1) 

where the electric fields a t  position r created by the 
system in reactant and product are denoted D,(r) and 
Db(r), respectively, and P(r) is the solvent polarization. 
We have evaluated the solvent quantities (eq 111-2 and 
111-3) to second order in the solvent-solute interaction, 
assuming Gaussian statistics of solvent fluctuations, 
resulting in35 

I [ x  - A - M(t ) (y  - X)]2 
(4aXkBT[1 - kf(t)])-'/2exp - 

4XkBT[ 1 - W (  t)] I 
(1v-3j 

and Wb(x,t;Y) are given by the same expressions 
by replacing x - X and y - X with x + X and y + A, 
respectively. The solvation information entering eq 
IV-2 and IV-3 is contained in a single static parameter 
X and a single dynamical quantity M(t) .  2h (Up,) - 
( U p b )  is the solvent reorganization ener&= due to the 
change in the molecular configuration from reactant to 
product. M(t) [ ( U ( t ) U )  - ( U ) 2 ] / [ ( V )  - (U)2] i s a  
normalized solvent correlation function, with M(0)  = 
1 and M(m)  = 0. 

The semiclassical formulation developed in section 
I1 showed how molecular rate processes and nonlinear 
optical line shapes may be expressed in terms of the 
solvent quantities a,(x) and W;(x,t;y), which depend on 
A and M(t) .  In optical measurements, 2X represent the 
static Stokes shift while M ( t )  is the normalized dy- 
namical Stokes shift f u n c t i ~ n . ~ l ? ~ ~ * ~ ~  Using eq IV-1, X 
and M ( t )  can be expressed in terms of the solvent po- 
larization correlation function, C (r-r',t), and the 
difference between the electric fie&, D, and Db Cpp- 
(r-r',t) can further be related, by using the fluctua- 
tion-dissipation theorem, to the wavevector- and fre- 
quency-dependent solvent dielectric function c ( k , ~ ) . ~ ~  
The dielectric function is usually known from macro- 
scopic (long wavelength) measurements that yield only 
the k = 0 component of e(k,w). If the wavevector de- 
pendence of E is ignored and we substituted e(w) = e(k 
= 0,w) for e(k,w),  we obtain the commonly used di- 
electric continuum (long wavelength) approximation34*35 

X = r-31pa - &I2[l/& - l / e O ]  (IV-4a) 

(42) Loring, R. F.; Mukamel, S. J. Chem. Phys. 1987, 87, 1272. 
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where to is the static (w = 0) and t, is the high-fre- 
quency (optical) value of the solvent dielectric function. 
In eq IV-4a, we have evaluated the fields D, and Db by 
assuming that the system has permanent dipoles pa and 
&, in the a and b states, respectively. r is the effective 
molecular size (hard-sphere radius).34 Note that in this 
case X depends strongly on the nature of the electronic 
system whereas M(t)  depends only on the solvent. Let 
us consider a typical form for the dielectric function 
that holds for a large number of solvents, Le., the 
Cole-Davidson form:43 

Equation IV-5 represents a solvent with a distribution 
of dielectric relaxation time scales, and p and T~ are two 
parameters characterizing this distribution. ( T ~  is a 
typical solvent time scale, and p controls the width of 
the distribution.) The Debye model for the dielectric 
function is given by eq IV-5 with p = 1. For this model 
in the continuum (k = 0) approximation, the system has 
a single dielectric relaxation time T~ We then get M(t) 
= exp(-t/TL) with T L  being the longitudinal solvent 
relaxation time T~ = ~ ~ ( t ~ / t ~ ) .  It is interesting to note 
that, for the Debye model, the time scales of the Stokes 
shift and the line broadening in hole-burning and in 
fluorescence, and the solvent time scales relevant to the 
rate (7, and T b )  for small barriers, are all equal to T ~ . ~ ~  

This is a special characteristic of the Debye continuum 
model. In general, the solvent has several time scales; 
M(t)  as displayed in fluorescence and hole-burning 
measurements will show directly these various time 
scales, whereas 7, and Tb,  which appear in the rate 
constant (eq 111-7), will be some weighted average of 
these time scales. It should further be noted that even 
in a Debye solvent we expect to have a multitude of 
time scales related to the dynamics of the various sol- 
vation shells. The incorporation of solvation shell 
structure may be made in the present formulation by 
considering the complete frequency- and wavevector- 
dependent dielectric f u n c t i ~ n . ~ ~ ~ ~  This is essential in 
order to calculate the multiple relevant solvent time 
scales that are experimentally observed in, e.g., time- 
resolved fluorescence  measurement^.^^^^^ 

We have calculated fluorescence and pump-probe 
(hole-burning) line shapes of a polar solute in a Debye 
model solvent at 247 K with to = 33.5, t, = 4.8,,and TL 
= 150 ps.34 In these calculations we have also included 
intramolecular vibrations by writing J(tl)  and R(t3,tz,tl) 
as products of a solvation term and an intramolecular 
term, which may be evaluated analytically for harmonic 
 molecule^.^^-^^ In Figure 2 we display the calculated 
time-resolved hole-burning spectrum of ,the retinal 
chromophore in bacteriorhodopsin, which has 29 opti- 
cally active vibrational modes.34. The frames show 
hole-burning spectra measured by probe pulse as suc- 
cessively longer delay times with respect to pump pulse. 
The hole-burning spectrum at 1 ps resembles a Raman 
spectrum, with distinct resonances when w1 - w2 equals 
the frequency difference of two vibronic states of the 
electronic ground state and the electronic excited state. 
The hole-burning spectrum for times short compared 

Elsevier: Amsterdam, 1978. 
(43) Bottcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization; 

(44) Chandra, A.; Bagchi, B. J. Chem. Phys. 1989, 90, 1832. 
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Figure 2. Time-resolved hole-burning spectra of a polyatomic 
solute in a Debye solvent at 247 K following a l-ps excitation pulse. 
The longitudinal dielectric relaxation time, 7L, is 150 ps. The 
model solute has the 29 Raman-active vibrational modes of the 
retinal chromophore in bacteriorhodopsin and undergoes rapid 
vibrational relaxation. The pump frequency is given by w1 = w b  + X + 1528 cm-'. 

h 

Figure 3. The logarithm (base 10) of the rate K (eq III-7) in units 
of Alh is plotted as a function of log (~&/h) ,  where A = (2AkT)1/2. 
V = A. We assume IEo + Al/A > 1 and neglect the back reaction 
by setting 7* = 0. The dashed curves show the logarithm of the 
nonadiabatic rate KNA (setting T &  = Tb = 0). A Cole-Davidson 
solvent is used with p = 0.5, eo = 64, and em = 4.1. The different 
curves correspond to various values of (Ea + A)/A as indicated. 

to rL shows substantial line narrowing relative to the 
steady-state spectrum, because the pump pulse is not 
sufficiently short to excite the entire inhomogeneous 
distribution of solute molecules. The pump pulse se- 
lects a subset of solute molecules and surrounding 
solvent environments whose transition frequencies are 
close to the excitation frequency, leaving particles in 
the excited electronic state and holes in the ground 
electronic state. For observation times much less than 
TL,  the solvent is effectively static, and the hole-burning 
line shape is narrow. For observation times comparable 
to TL, the solvent around each particle and hole has 
begun to relax, and the spectrum broadens, and 
meanwhile the contribution of particles (wb) displays 
a red shift. In the final frame, the steady-state hole- 
burning spectrum is reproduced (dashed line) for com- 
parison with the spectrum at  t = T ~ .  

We shall turn now to the calculation of electron- 
transfer rates in polar solvents with a Cole-Davidson 
dielectric function. In Figure 3, we present the rate 
constant (eq 111-7) as a function of the solvent charac- 
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teristic time scale 70 (eq IV-5). Large values of 70 

correspond to high friction. In this case the reaction 
is adiabatic, and the rate decreases with increasing 70. 
When r0 is sufficiently small, the reaction is nonadia- 
batic and the rate is proportional to the line-shape 
function ua(-Eo), which is motionally narrowed and 
assumes a Lorentzian form. Equation IV-2 does not 
hold in this case, and the rate is then proportional to 
the line width, which increases linearly with 70. The 
rate, when plotted vs 70, thus exhibits a maximum. This 
is analogous to the Kramers turnover curve.14J5 The 
dashed curves show the nonadiabatic rates (the nu- 
merator of eq 111-7), assuming the adiabaticity param- 
eter v = 0. For small enough 70, the rate is nonadiabatic. 
As r0 increases, the nonadiabatic rate becomes inde- 
pendent of 70, since a(-Eo) assumes the Gaussian form. 
However, when 7 0  is sufficiently large, the rate even- 
tually becomes adiabatic and decreases with 70, as 
shown by the solid curves. 

This Account presents a general theoretical frame- 
work, based on the evolution of the density matrix, that 
allows the calculation of solvation dynamics and es- 
tablishes a general fundamental connection between 
reaction rates and nonlinear optical processes in solu- 
tion. Our theory of electron transfer in condensed 
phases interpolates between the nonadiabatic and the 
adiabatic limits. A new insight is provided for the 
transition from nonadiabatic to adiabatic rates, and the 
relevant solvent time scale that controls the adiabaticity 
is precisely defined. We have demonstrated how solvent 
correlation functions and dephasing rates extracted 
from linear and nonlinear optical measurements (ab- 
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sorption, fluorescence, hole-burning, and x ( ~ ) )  may be 
used to predict electron-transfer rates. A major goal 
of spectroscopic studies in condensed phases is to pro- 
vide information that allows the prediction of reaction 
rates in the same solvent. When the solvent-solute 
interaction is treated perturbatively, and the dielectric 
continuum model is adopted for the solvent, then the 
solvation effect depends on a single static quantiy (the 
reorganization energy A) and a single correlation func- 
tion M ( t )  (eq IV-4). X is very sensitive to the nature 
of the electronic states involved in the process and is 
expected to be very different for electron transfer and 
optical measurements, even when using the same 
chromophore in the same solvent. M ( t ) ,  on the other 
hand, depends only on the solvent dielectric fluctua- 
tions. M ( t )  obtained from, e.g., time-dependent Stokes 
shift measurements can then be used to predict elec- 
tron-transfer rates in the same solvent. This simple 
prediction is a result of several simplifying approxi- 
mations, particularly the dielectric continuum model 
for the solvent, which is of course a great oversimpli- 
fication of the problem. The present theory points out 
how these approximations can be systematically im- 
proved and what static and dynamical quantities need 
to be calculated in order to develop a more microscopic 
description of solvation. 
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